Американские ученые случайным образом нашли крайне простой способ «рисовать» квантовые транзисторы и прочие элементы квантовых компьютеров на поверхности так называемых топологических изоляторов при помощи обычных ламп дневного света, говорится в статье, опубликованной в журнале Science Advances.
«Если быть честным, то мы пытались изучить совершенно иной феномен. У нас постоянно появлялись некие помехи при замерах, которые, как мы выяснили через некоторое время, порождались одной из флуоресцентных ламп, имевшихся в лаборатории. Сначала мы были рады, что избавились от помех, а потом мы внезапно осознали, что наши лампы делали то, чего наши коллеги безуспешно пытались добиться долгое время», — заявил Эндрю Йейтс (Andrew Yeats) из университета Чикаго (США).
Йейтс и его коллеги экспериментировали с так называемыми топологическими изоляторами — относительно новым классом материалов, которые проводят электрический ток только на поверхности, а внутри остаются диэлектриками-изоляторами. Подобные вещества привлекают физиков тем, что электроны в этом поверхностном слое ведут себя чрезвычайно стабильно, что позволяет использовать их в качестве сверхнадежного «хранилища» информации в квантовых компьютерах.
Проблема заключается в том, что все попытки «скрестить» топологические изоляторы и традиционные полупроводниковые технологии, применяемые в IT, завершились неудачно — ученым не удавалось создать транзисторы и прочие «кирпичики» компьютера на базе пленок из таких веществ, не разрушая их квантовых свойств.
Группе Йейтса, благодаря счастливой случайности, удалось понять, как можно превратить подобный изолятор в транзистор, не прикасаясь к нему к нему руками или инструментами, буквальным образом «рисуя» его при помощи луча света.
Как показали «опыты» с лампой дневного света, электроны в молекулах титаната стронция, составляющего основу топологического изолятора, с которым экспериментировали авторы статьи, реагируют на ультрафиолетовое излучение с определенной длиной волны, которое вырабатывали эти флуоресцентные светильники.
Это позволяет очень точно и гибко «настраивать» энергию, которой обладают электроны, и менять их свойства таким образом, что на поверхности топологического изолятора будут возникать так называемые p-n переходы — зоны с разной проводимостью, составляющие основу всех современных транзисторов.
Подобные транзисторы, как объясняют Йейтс и его коллеги, продолжают существовать на топологическом изоляторе даже после выключения лампы, что позволяет использовать их в практических целях. Вдобавок к этому, все «рисунки» на поверхности пленки можно легко удалить, осветив ее красным светом. Как надеются ученые, столь большая гибкость и удобство для экспериментов ускорят разработку квантовых компьютеров на базе таких пленок и транзисторов.